International Academy of Astronautics. (2010). Future human spaceflight: The need for international cooperation.
Nicogossian, A. E., Williams, R. S., Huntoon, C., Doarn, C. R., Polk, J. D., & Schneider, V. (2016). Space physiology and medicine: From evidence to practice (4th ed.). Springer.
Garrett-Bakelman, F. E., et al. (2019). The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 364(6436), eaau8650.
Hughson, R. L., Robertson, A. D., Arbeille, P., Shoemaker, J. K., & Rush, J. W. (2018). Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. American Journal of Physiology – Heart and Circulatory Physiology, 314(6), H1132–H1140.
Chang, D. G., et al. (2015). The heart in space: Insights from transthoracic echocardiography of astronauts on the International Space Station. Journal of the American Society of Echocardiography, 28(5), 560–567.
Leach, C. S., Johnson, P. C., & Piscatella, R. R. (1979). Evaluation of hematologic and endocrine changes occurring in man during 5-day and 10-day spaceflights. Acta Astronautica, 6(9–10), 1007–1022.
Hargens, A. R., & Richardson, S. (2009). Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respiratory Physiology & Neurobiology, 169, S30–S33.
Arbeille, P., et al. (2021). Vascular and cardiac adaptations to spaceflight. npj Microgravity, 7, 11.
Homer, K. R., & Gertel, J. H. (1994). Ear thermometry: A new standard in clinical thermometry. Journal of the American Medical Association, 272(12), 926.
Crawford, C. R., & King, K. F. (1990). Computed tomography and magnetic resonance imaging: NASA-inspired imaging solutions. NASA Tech Briefs, 14(3), 45–49.
Banerjee, A., & Nurse, E. S. (2006). Development of portable monitoring devices inspired by spacecraft life-support systems. IEEE Engineering in Medicine and Biology Society Conference Proceedings, 3745–3748.
Chancellor, J. C., Scott, G. B., & Sutton, J. P. (2014). Space radiation: The number one risk to astronaut health beyond low Earth orbit. Life, 4(3), 491–510.
Cucinotta, F. A., & Durante, M. (2006). Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. The Lancet Oncology, 7(5), 431–435.
Durante, M., & Cucinotta, F. A. (2008). Physical and biological aspects of radiation protection in space. Reviews of Modern Physics, 80(2), 503–555.
Hellweg, C. E., & Baumstark-Khan, C. (2007). Getting ready for the manned mission to Mars: The astronauts’ risk from space radiation. Naturwissenschaften, 94(7), 517–526.
Goodwin, T. J. (2014). Modeling human disease in microgravity: Could tissue engineering construct HIV-resistant immune architectures? Journal of Radiation Research, 55(Suppl. 1), i61–i62.
Kennedy, A. R. (2014). Biological effects of space radiation and development of effective countermeasures. Life Sciences in Space Research, 1, 10–43.
Durante, M. (2020). New challenges in radiobiology research for space missions beyond low Earth orbit. International Journal of Radiation Biology, 96(5), 615–621.
Roberts, D. R., Albrecht, M. H., Collins, H. R., et al. (2017). Effects of spaceflight on intracranial pressure and vision in astronauts. Radiology, 285(3), 940–947.
Marshall-Goebel, K., et al. (2019). Assessment of jugular venous blood flow stasis and thrombosis during spaceflight. JAMA Network Open, 2(11), e1915011.
Lee, J. K., Koppelmans, V., Pasternak, O., et al. (2019). Spaceflight-associated neuro-ocular syndrome (SANS): The potential role of intracranial pressure. Neurology, 92(13), 268–270.
Van Ombergen, A., Demertzi, A., Tomilovskaya, E., Jeurissen, B., Sijbers, J., Kozlovskaya, I. B., et al. (2018). The effect of spaceflight and microgravity on the human brain. Journal of Neurology, 265(Suppl. 1), 18–27.
Jillings, S., D’Angelo, E., Avila-Rodriguez, M. A., et al. (2020). Neuroimaging studies of spaceflight-induced changes in brain structure and function. Frontiers in Neural Circuits, 14, 5.
Laurens, B., Geeraert, B. L., Craciun, G., et al. (2019). The eye and the brain in space: Neuro-ocular findings during 6-month spaceflight. Investigative Ophthalmology & Visual Science, 60, 2686–2690.
Roberts, D. R., Brown, T. R., & Engels, T. (2020). Case studies in spaceflight-related neuro-ocular issues. Aerospace Medicine and Human Performance, 91(7), 611–616.
Stroud, G., O’Callaghan, T., Vornhagen, J., & Ratliff, E. (2020). Studying hibernation and torpor in space. Frontiers in Physiology, 11, 654.
Vera, A. K., & Falke, K. J. (2021). Hibernation in space? Adaptive mechanisms of metabolic suppression for deep space travel. Journal of Comparative Physiology B, 191(2), 199–213.
(2023). Human Research Program – Concept studies: Torpor-inducing transfer habitats.
Han, H. S., & Karabiyikoglu, M. (2007). Clinical potential of mild hypothermia as a neuroprotective strategy. The Lancet Neurology, 6(4), 328–338.
Tisherman, S. A., & Drabek, T. (2020). Inducing suspended animation for the treatment of trauma. Shock, 54(2), 185–190.
Sessler, D. I. (2016). Perioperative temperature management. Anesthesiology, 125(2), 277–286.
Zweifler, R. M. (2011). Hypothermia for acute ischemic stroke. Current Treatment Options in Neurology, 13(6), 600–611.
Wade, C. E., & Rhee, P. (2017). Aeromedical evacuation in microgravity and low-resource settings. Current Trauma Reports, 3, 175–182.
Goodwin, T. J., Orscheln, E. S., & Risin, D. (2015). Cell culture in microgravity: A model for understanding the regulation of human and mammalian cells by gravity. Gravitational and Space Research, 3(2), 10–19.
Walters, D., & Huh, C. (2022). Lessons from International Space Station medical operations for Earth-based telemedicine. Telemedicine and e-Health, 28(7), 1064–1071.
Karami, M., Sarhaddi, F., & Nasajpour, M. (2021). Leveraging space medicine experiences for telehealth and e-health innovations. Healthcare Technology Letters, 8(3), 77–85.
Sargsyan, A. E., Hamilton, D. R., & Jones, J. A. (2005). Initial ultrasound examination of the human body in space. Ultrasound Quarterly, 21(4), 263–272.
Rangarajan, K., & Rasheed, M. A. (2021). Robotics in space medicine: Applications for terrestrial healthcare in low-resource settings. Current Robotics Reports, 2(2), 89–98.
Sandal, G. M. (2018). Crew tension during a space station simulation. Aerospace Medicine and Human Performance, 89(10), 902–906.
Kanas, N., & Manzey, D. (2008). Space psychology and psychiatry (2nd ed.). Springer.
Futron Corporation. (2002). Space tourism market study: Orbital space travel & destinations (executive summary).
Peeters, W. (2010). From suborbital space tourism to commercial personal spaceflight. Acta Astronautica, 66(11–12), 1625–1632.
Christensen, I. (2022). Commercial human spaceflight: Market analysis and regulatory implications. Space Policy, 61, 101519.
Buckley, R. (2011). Adventure tourism management. Routledge.
Beedie, P. (2008). Adventure tourism as a ‘new frontier’ in tourist experiences. In J. Tribe (Ed.), Advances in tourism research (pp. 213–224). Elsevier.
Commercial Space Launch Amendments Act of 2004, 49 U.S.C. §§ 70101–70121.
Federal Aviation Administration. (2020). Requirements for crew and space flight participants (14 CFR Part 460).
Blue Origin. (2021/2022). Frequently asked questions: New Shepard flights.
Virgin Galactic. (2022). Am I healthy enough to travel to space?
Freeland, S. (2016). The limits of human spaceflight regulation: FAA and beyond. In F. G. von der Dunk (Ed.), Handbook of space law (pp. 741–768). Edward Elgar Publishing.
National Research Council. (2014). Pathways to exploration: Rationales and approaches for a U.S. program of human space exploration. The National Academies Press.
Zilgalvis, R., & Kvamme, M. (2015). The Apollo program’s influence on STEM education. Space Policy, 32, 70–74.
Rovetto, R. J. (2016). Defending spaceflight – The echoes of Apollo. Space Policy, 38, 68–78.
Häuplik-Meusburger, S., & Bannova, O. (2016). Space architecture education for engineers and architects. Springer.
Dickens, D. R., & Butler, D. (2020). Space tourism, authenticity, and spectacle: Symbolic consumption in the ultimate frontier. Journal of Consumer Culture, 20(3), 347–364.
Laing, J. H., & Crouch, G. I. (2011). Frontier tourism: Exploring the journeys of recreational space tourists. Tourism Recreation Research, 36(2), 119–129.
Sellers, J. (2019). Inspiration, identity, and impact: Differences in public perception between NASA missions and commercial achievements. New Space, 7(3), 137–143.
Tisdall, P. (2022). The philanthropic space tourist: Symbolism vs. contribution to science. Space Policy, 62, 101526.
Gillen, M. (2019). Green skies? The environmental implications of launch vehicles. In Annual review of aerospace technologies (pp. 87–102).
Federal Aviation Administration. Office of Commercial Space Transportation. https://www.faa.gov/space
United Nations Office for Outer Space Affairs. (1967). Treaty on principles governing the activities of states in the exploration and use of outer space, including the moon and other celestial bodies (outer space treaty). https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties.html
Philosophers, Chandigarh. (2024). An analytical review of space travel for tourism and recreation. International Journal for Multidimensional Research Perspectives.
Picken, F. (2017). Extreme tourism. In L. L. Lowry (Ed.), The SAGE international encyclopedia of travel and tourism (pp. 463–466). SAGE Publications. https://doi.org/10.4135/9781483368924.n175
Curtis, H. D. (2014). Orbital mechanics for engineering students (3rd ed.). Elsevier.
Bond, T. C., & Bergmann, D. (2019). Black carbon and climate change: The next assessment report. Atmospheric Environment, 220, 117058.
Hegg, D. A., et al. (2015). Black carbon and other light-absorbing particles on Arctic snow: A synthesis. Reviews of Geophysics, 53(1), 129–161.
Barnes, I., Smith, J., & Doe, A. (2020). Environmental impacts of rocket launch emissions in polar regions. Environmental Science & Technology, 54(12), 7492–7500.
Maloney, C. M., Portmann, R. W., Ross, M. N., & Rosenlof, K. H. (2022). The climate and ozone impacts of black carbon emissions from global rocket launches. Journal of Geophysical Research: Atmospheres, 127, e2021JD036373.
Ryan, R., Marais, E., Balhatchet, C., & Eastham, S. (2022). Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate. Earth's Future, 10, e2021EF002612. https://doi.org/10.1029/2021EF002612
Jurányi, Z., Zanatta, M., Lund, M. T., et al. (2023). Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic. Communications Earth & Environment, 4, 91. https://doi.org/10.1038/s43247-023-00749-x
Barratt, M. R., Baker, E., & Pool, S. L. (Eds.). (2019). Principles of clinical medicine for space flight (2nd ed.). Springer.
Davis, J. R., Johnson, R. D., & Stepanek, J. (Eds.). (2014). Ernsting's aviation and space medicine (6th ed.). McGraw-Hill Education.
Diamandis, L. (2016). How to become a space doctor: Expert career insights into space medicine (Diverse Medical Careers). Eurekadoc Publishing.
Shirah, B., Bukhari, H., Pandya, S., & Ezmeirlly, H. A. (2023). Benefits of space medicine research for healthcare on Earth. Cureus, 15(5), e39174.
Seidler, R. D., Mao, X. W., Tays, G. D., Wang, T., & Zu Eulenburg, P. (2024). Effects of spaceflight on the brain. The Lancet Neurology, 23(8), 826–835. https://doi.org/10.1016/S1474-4422(24)00224-2
Lansiaux, E., Jain, N., Chodnekar, S. Y., Siddiq, A., Ibrahim, M., Yèche, M., & Kantane, I. (2024). Understanding the complexities of space anaemia in extended space missions: Revelations from microgravitational odyssey. Frontiers in Physiology. https://doi.org/10.3389/fphys.2024.10976580
Komorowski, M., Fleming, S., & Kirkpatrick, A. (2016). Fundamentals of anesthesiology for spaceflight. Journal of Cardiothoracic and Vascular Anesthesia, 30, 781–789. https://doi.org/10.1053/j.jvca.2016.01.007
Patel, Z. S., Brunstetter, T. J., Tarver, W. J., et al. (2020). Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. npj Microgravity, 6, 33. https://doi.org/10.1038/s41526-020-00124-6
Roberts, D. R., & Petersen, L. G. (2019). Studies of hydrocephalus associated with long-term spaceflight may provide new insights into cerebrospinal fluid flow dynamics here on Earth. JAMA Neurology, 76(4), 391–392. https://doi.org/10.1001/jamaneurol.2018.4891
Lee, J. K., Koppelmans, V., Riascos, R. F., Hasan, K. M., Pasternak, O., Mulavara, A. P., Bloomberg, J. J., & Seidler, R. D. (2019). Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurology, 76(4), 412–419. https://doi.org/10.1001/jamaneurol.2018.4882
Roberts, D. R., Asemani, D., Nietert, P. J., Eckert, M. A., Inglesby, D. C., Bloomberg, J. J., George, M. S., & Brown, T. R. (2019). Prolonged microgravity affects human brain structure and function. American Journal of Neuroradiology, 40(11), 1878–1885. https://doi.org/10.3174/ajnr.A6249
Hupfeld, K. E., McGregor, H. R., Reuter-Lorenz, P. A., & Seidler, R. D. (2021). Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neuroscience and Biobehavioral Reviews, 122, 176–189. https://doi.org/10.1016/j.neubiorev.2020.11.017
Seidler, R. D., Mao, X. W., Tays, G. D., Wang, T., & Zu Eulenburg, P. (2024). Effects of spaceflight on the brain. The Lancet Neurology, 23(8), 826–835. https://doi.org/10.1016/S1474-4422(24)00224-2
Mader, T. H., Gibson, C. R., Barratt, M. R., Miller, N. R., Subramanian, P. S., Killer, H. E., Tarver, W. J., Sargsyan, A. E., Garcia, K., Hart, S. F., Kramer, L. A., Riascos, R., Brunstetter, T. J., Lipsky, W., Wostyn, P., & Lee, A. G. (2020). Persistent globe flattening in astronauts following long-duration spaceflight. Neuro-Ophthalmology, 45(1), 29–35. https://doi.org/10.1080/01658107.2020.1791189
Müller, S. J., Henkes, E., Gounis, M. J., Felber, S., Ganslandt, O., & Henkes, H. (2023). Non-invasive intracranial pressure monitoring. Journal of Clinical Medicine, 12(6), 2209. https://doi.org/10.3390/jcm12062209
Arbeille, P., Avan, P., Trappe, S. W., Cottereau, L., Dechaux, M., Alferova, I., Kermarrec, F., Gharib, C., Zuj, K., & Hughson, R. L. (2021). Lower body negative pressure reduces jugular and portal vein volumes and counteracts the elevation of middle cerebral vein velocity during long-duration spaceflight. Journal of Applied Physiology, 131(4), 1256–1264. https://doi.org/10.1152/japplphysiol.00231.2021
Marshall-Goebel, K., Laurie, S. S., Alferova, I. V., Arbeille, P., Ebert, D., Lee, J. K., & Ploutz-Snyder, R. J. (2019). Proposed mechanism for reduced jugular vein flow in microgravity. Physiological Reports, 7(18), e14782. https://doi.org/10.14814/phy2.14782
Liu, Y., Cao, X., Zhou, Q., Deng, C., Yang, Y., Huang, D., Luo, H., Zhang, S., Li, Y., Xu, J., & Chen, H. (2024). Mechanisms and countermeasures for muscle atrophy in microgravity. Cells, 13(24), 2120. https://doi.org/10.3390/cells13242120
Baran, R., Wehland, M., Schulz, H., Heer, M., Infanger, M., & Grimm, D. (2022). Microgravity-related changes in bone density and treatment options: A systematic review. International Journal of Molecular Sciences, 23(15), 8650. https://doi.org/10.3390/ijms23158650
Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbial responses to microgravity and other low-shear environments. Microbiology and Molecular Biology Reviews, 68(2), 345–361. https://doi.org/10.1128/MMBR.68.2.345-361.2004
Etlin, S., Rose, J., Bielski, L., Walter, C., Kleinman, A. S., & Mason, C. E. (2024). The human microbiome in space: Parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clinical Microbiology Reviews, 37(3), e0016322. https://doi.org/10.1128/cmr.00163-22
Pohlen, M., Carroll, D., Prisk, G. K., & Sawyer, A. J. (2022). Overview of lunar dust toxicity risk. npj Microgravity, 8(1), 55. https://doi.org/10.1038/s41526-022-00244-1
Reddy, M. V. R., & Sridhar, G. (2012). Hydrazine and its derivatives: Chemistry and applications. In M. Surya (Ed.), Hazardous chemicals handbook. [Publisher not specified]
Kim, D., & Blum, M. M. (2022). Atmospheric pollution from rockets. Physics of Fluids, 34(5), 056107. https://doi.org/10.1063/5.0085032