Referanser

Referanser


  1. Lovell, J., & Kluger, J. (1994). Lost moon: The perilous voyage of Apollo 13. Houghton Mifflin Harcourt.
  2. Apollo 13 overview. https://www.nasa.gov
  3. International Academy of Astronautics. (2010). Future human spaceflight: The need for international cooperation.
  4. Nicogossian, A. E., Williams, R. S., Huntoon, C., Doarn, C. R., Polk, J. D., & Schneider, V. (2016). Space physiology and medicine: From evidence to practice (4th ed.). Springer.
  5. (2023). Human Research Program – Evidence reports. https://www.nasa.gov/hrp/evidence
  6. Garrett-Bakelman, F. E., et al. (2019). The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 364(6436), eaau8650.
  7. Hughson, R. L., Robertson, A. D., Arbeille, P., Shoemaker, J. K., & Rush, J. W. (2018). Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. American Journal of Physiology – Heart and Circulatory Physiology, 314(6), H1132–H1140.
  8. Chang, D. G., et al. (2015). The heart in space: Insights from transthoracic echocardiography of astronauts on the International Space Station. Journal of the American Society of Echocardiography, 28(5), 560–567.
  9. Leach, C. S., Johnson, P. C., & Piscatella, R. R. (1979). Evaluation of hematologic and endocrine changes occurring in man during 5-day and 10-day spaceflights. Acta Astronautica, 6(9–10), 1007–1022.
  10. Hargens, A. R., & Richardson, S. (2009). Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respiratory Physiology & Neurobiology, 169, S30–S33.
  11. Arbeille, P., et al. (2021). Vascular and cardiac adaptations to spaceflight. npj Microgravity, 7, 11.
  12. NASA Spinoff. Spinoff (annual publication). https://spinoff.nasa.gov
  13. Homer, K. R., & Gertel, J. H. (1994). Ear thermometry: A new standard in clinical thermometry. Journal of the American Medical Association, 272(12), 926.
  14. Crawford, C. R., & King, K. F. (1990). Computed tomography and magnetic resonance imaging: NASA-inspired imaging solutions. NASA Tech Briefs, 14(3), 45–49.
  15. Banerjee, A., & Nurse, E. S. (2006). Development of portable monitoring devices inspired by spacecraft life-support systems. IEEE Engineering in Medicine and Biology Society Conference Proceedings, 3745–3748.
  16. Chancellor, J. C., Scott, G. B., & Sutton, J. P. (2014). Space radiation: The number one risk to astronaut health beyond low Earth orbit. Life, 4(3), 491–510.
  17. Cucinotta, F. A., & Durante, M. (2006). Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. The Lancet Oncology, 7(5), 431–435.
  18. Durante, M., & Cucinotta, F. A. (2008). Physical and biological aspects of radiation protection in space. Reviews of Modern Physics, 80(2), 503–555.
  19. Hellweg, C. E., & Baumstark-Khan, C. (2007). Getting ready for the manned mission to Mars: The astronauts’ risk from space radiation. Naturwissenschaften, 94(7), 517–526.
  20. Goodwin, T. J. (2014). Modeling human disease in microgravity: Could tissue engineering construct HIV-resistant immune architectures? Journal of Radiation Research, 55(Suppl. 1), i61–i62.
  21. Kennedy, A. R. (2014). Biological effects of space radiation and development of effective countermeasures. Life Sciences in Space Research, 1, 10–43.
  22. Durante, M. (2020). New challenges in radiobiology research for space missions beyond low Earth orbit. International Journal of Radiation Biology, 96(5), 615–621.
  23. Roberts, D. R., Albrecht, M. H., Collins, H. R., et al. (2017). Effects of spaceflight on intracranial pressure and vision in astronauts. Radiology, 285(3), 940–947.
  24. Marshall-Goebel, K., et al. (2019). Assessment of jugular venous blood flow stasis and thrombosis during spaceflight. JAMA Network Open, 2(11), e1915011.
  25. Lee, J. K., Koppelmans, V., Pasternak, O., et al. (2019). Spaceflight-associated neuro-ocular syndrome (SANS): The potential role of intracranial pressure. Neurology, 92(13), 268–270.
  26. Van Ombergen, A., Demertzi, A., Tomilovskaya, E., Jeurissen, B., Sijbers, J., Kozlovskaya, I. B., et al. (2018). The effect of spaceflight and microgravity on the human brain. Journal of Neurology, 265(Suppl. 1), 18–27.
  27. Jillings, S., D’Angelo, E., Avila-Rodriguez, M. A., et al. (2020). Neuroimaging studies of spaceflight-induced changes in brain structure and function. Frontiers in Neural Circuits, 14, 5.
  28. Laurens, B., Geeraert, B. L., Craciun, G., et al. (2019). The eye and the brain in space: Neuro-ocular findings during 6-month spaceflight. Investigative Ophthalmology & Visual Science, 60, 2686–2690.
  29. Roberts, D. R., Brown, T. R., & Engels, T. (2020). Case studies in spaceflight-related neuro-ocular issues. Aerospace Medicine and Human Performance, 91(7), 611–616.
  30. Stroud, G., O’Callaghan, T., Vornhagen, J., & Ratliff, E. (2020). Studying hibernation and torpor in space. Frontiers in Physiology, 11, 654.
  31. Vera, A. K., & Falke, K. J. (2021). Hibernation in space? Adaptive mechanisms of metabolic suppression for deep space travel. Journal of Comparative Physiology B, 191(2), 199–213.
  32. (2023). Human Research Program – Concept studies: Torpor-inducing transfer habitats.
  33. Han, H. S., & Karabiyikoglu, M. (2007). Clinical potential of mild hypothermia as a neuroprotective strategy. The Lancet Neurology, 6(4), 328–338.
  34. Tisherman, S. A., & Drabek, T. (2020). Inducing suspended animation for the treatment of trauma. Shock, 54(2), 185–190.
  35. Sessler, D. I. (2016). Perioperative temperature management. Anesthesiology, 125(2), 277–286.
  36. Zweifler, R. M. (2011). Hypothermia for acute ischemic stroke. Current Treatment Options in Neurology, 13(6), 600–611.
  37. Wade, C. E., & Rhee, P. (2017). Aeromedical evacuation in microgravity and low-resource settings. Current Trauma Reports, 3, 175–182.
  38. Goodwin, T. J., Orscheln, E. S., & Risin, D. (2015). Cell culture in microgravity: A model for understanding the regulation of human and mammalian cells by gravity. Gravitational and Space Research, 3(2), 10–19.
  39. Walters, D., & Huh, C. (2022). Lessons from International Space Station medical operations for Earth-based telemedicine. Telemedicine and e-Health, 28(7), 1064–1071.
  40. Karami, M., Sarhaddi, F., & Nasajpour, M. (2021). Leveraging space medicine experiences for telehealth and e-health innovations. Healthcare Technology Letters, 8(3), 77–85.
  41. Sargsyan, A. E., Hamilton, D. R., & Jones, J. A. (2005). Initial ultrasound examination of the human body in space. Ultrasound Quarterly, 21(4), 263–272.
  42. Rangarajan, K., & Rasheed, M. A. (2021). Robotics in space medicine: Applications for terrestrial healthcare in low-resource settings. Current Robotics Reports, 2(2), 89–98.
  43. Sandal, G. M. (2018). Crew tension during a space station simulation. Aerospace Medicine and Human Performance, 89(10), 902–906.
  44. Kanas, N., & Manzey, D. (2008). Space psychology and psychiatry (2nd ed.). Springer.
  45. Futron Corporation. (2002). Space tourism market study: Orbital space travel & destinations (executive summary).
  46. Peeters, W. (2010). From suborbital space tourism to commercial personal spaceflight. Acta Astronautica, 66(11–12), 1625–1632.
  47. Christensen, I. (2022). Commercial human spaceflight: Market analysis and regulatory implications. Space Policy, 61, 101519.
  48. Buckley, R. (2011). Adventure tourism management. Routledge.
  49. Beedie, P. (2008). Adventure tourism as a ‘new frontier’ in tourist experiences. In J. Tribe (Ed.), Advances in tourism research (pp. 213–224). Elsevier.
  50. Commercial Space Launch Amendments Act of 2004, 49 U.S.C. §§ 70101–70121.
  51. Federal Aviation Administration. (2020). Requirements for crew and space flight participants (14 CFR Part 460).
  52. Federal Aviation Administration. (2021). Commercial Space Astronaut Wings – Eligibility requirements. https://www.faa.gov/space/licenses/wing_program
  53. Blue Origin. (2021/2022). Frequently asked questions: New Shepard flights.
  54. Virgin Galactic. (2022). Am I healthy enough to travel to space?
  55. Freeland, S. (2016). The limits of human spaceflight regulation: FAA and beyond. In F. G. von der Dunk (Ed.), Handbook of space law (pp. 741–768). Edward Elgar Publishing.
  56. National Research Council. (2014). Pathways to exploration: Rationales and approaches for a U.S. program of human space exploration. The National Academies Press.
  57. Zilgalvis, R., & Kvamme, M. (2015). The Apollo program’s influence on STEM education. Space Policy, 32, 70–74.
  58. Rovetto, R. J. (2016). Defending spaceflight – The echoes of Apollo. Space Policy, 38, 68–78.
  59. Häuplik-Meusburger, S., & Bannova, O. (2016). Space architecture education for engineers and architects. Springer.
  60. Dickens, D. R., & Butler, D. (2020). Space tourism, authenticity, and spectacle: Symbolic consumption in the ultimate frontier. Journal of Consumer Culture, 20(3), 347–364.
  61. Laing, J. H., & Crouch, G. I. (2011). Frontier tourism: Exploring the journeys of recreational space tourists. Tourism Recreation Research, 36(2), 119–129.
  62. Sellers, J. (2019). Inspiration, identity, and impact: Differences in public perception between NASA missions and commercial achievements. New Space, 7(3), 137–143.
  63. Tisdall, P. (2022). The philanthropic space tourist: Symbolism vs. contribution to science. Space Policy, 62, 101526.
  64. Gillen, M. (2019). Green skies? The environmental implications of launch vehicles. In Annual review of aerospace technologies (pp. 87–102).
  65. Business Insider. (2021, September 16). Space tourism backlash grows: Critics call it a billionaire’s playground. https://medium.com/@ayesha.siddiqa2197/space-tourism-a-billionaires-playground-or-humanity-s-future-393e28aba82b
  66. The Guardian. (2018, December 18). Richard Branson's Virgin Galactic space flights criticised as ‘dangerous, dead-end tech’. https://www.theguardian.com/science/2018/dec/18/richard-bransons-virgin-galactic-space-flights-criticised-as-dangerous-dead-end-tech
  67. The Guardian. (2021, July 19). Billionaires' space tourism plans blast off – but at what cost to the environment? The Guardian. https://www.theguardian.com/science/2021/jul/19/billionaires-space-tourism-environment-emissions
  68. (2022, August 17). Space tourism and its climate impact. https://geographical.co.uk/climate-change/space-tourism-climate-impact
  69. Von der Dunk, F. G. (Ed.). (2015). Handbook of space law (pp. 741–768). Edward Elgar Publishing.
  70. Bucchi, M., & Trench, B. (Eds.). (2021). Routledge handbook of public communication of science and technology (3rd ed.). Routledge.
  71. National Academies. (2022). Origins, worlds, and life: A decadal strategy for planetary science and astrobiology 2023–2032.
  72. Krauss, L. (2001). The physics of climate change and global catastrophes. Scientific American, 285(3), 50–57.
  73. Clifford, C. (2017, May 5). Stephen Hawking says humans must colonize another planet soon or face extinction. CNBC. https://www.cnbc.com/2017/05/05/stephen-hawking-human-extinction-colonize-planet.html
  74. ABC News. (2018, November 15). Physicist Michio Kaku says we need a back-up plan for survival. https://www.abc.net.au/news/2018-11-15/physicist-michio-kaku-says-we-need-a-back-up-plan-for-survival/10495782
  75. United Nations Office for Outer Space Affairs. (2017). Treaties and principles on outer space. https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties.html
  76. Federal Aviation Administration. Office of Commercial Space Transportation. https://www.faa.gov/space
  77. United Nations Office for Outer Space Affairs. (1967). Treaty on principles governing the activities of states in the exploration and use of outer space, including the moon and other celestial bodies (outer space treaty). https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties.html
  78. Fédération Aéronautique Internationale. https://www.fai.org/
  79. (2023). ESA astronaut selection.
    Foust, J. (2020, May 18). Who is an astronaut? The Space Review. https://www.thespacereview.com/article/4227/1
  80. Foust, J. (2023, June 12). Revisiting the definition of "astronaut". The Space Review. https://www.thespacereview.com/article/4630/1
  81. Fulmer, G. (2021). Why going to space doesn’t make you an astronaut. Aerospace America. https://aerospaceamerica.aiaa.org/departments/why-going-to-space-doesnt-make-you-an-astronaut/
  82. O’Brien, M. (2021, August 10). Who gets to be called an astronaut? It’s complicated. NBC News. https://www.nbcnews.com/science/space/gets-called-astronaut-complicated-rcna1499
  83. Federal Aviation Administration. (2023, August 18). Federal Register: Title 14 CFR, parts 401, 415, 431, and 435—Definitions of astronauts in commercial spaceflight regulations. https://www.govinfo.gov/content/pkg/FR-2023-08-18/html/2023-16858.htm
  84. Sveriges nya astronaut: Marcus Wandt. https://www.rymdstyrelsen.se/upptack-rymden/manniskan-och-rymden/marcus-wandt
  85. (2021). Crew Dragon: Our journey to space. https://www.nasa.gov/specials/spacexcrewdragon/
  86. Delta Technology. (2023). SpaceX Crew Dragon relied on automation [PDF]. https://deltatech1.com/wp-content/uploads/2023/02/SpaceX-Crew-Dragon-Relied-on-Automation-Delta-Technology.pdf
  87. Office of the Law Revision Counsel. (2023). United States Code, Title 51: National and commercial space programs. U.S. Government Publishing Office. https://www.govinfo.gov/content/pkg/USCODE-2023-title51/pdf/USCODE-2023-title51.pdf
  88. (2024, August 13). Crypto magnate Chun Wang buys SpaceX polar spaceflight Fram2. https://www.cnbc.com/2024/08/13/crypto-magnate-chun-wang-buys-spacex-polar-spaceflight-fram2.html
  89. The Guardian. (2022, December 4). What does it take to be an astronaut? Stars, the European Space Agency, and you. https://www.theguardian.com/commentisfree/2022/dec/04/astronaut-european-space-agency-stars
  90. European Space Agency. ESA astronaut selection in the final stages. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/ESA_astronaut_selection_in_the_final_stages
  91. Ministry of Economic Affairs and Employment of Finland. Questions and answers: Astronaut selection campaign. https://tem.fi/documents/1410877/3227301/Questions_and_answers_Astronaut_Selection_Campaign.pdf
  92. European Space Agency. Matthias Maurer. https://blogs.esa.int/exploration/category/astronauts/matthias-maurer/
  93. Foust, J. (2020, March 5). Space Adventures to fly tourists on Crew Dragon mission. SpaceNews. https://spacenews.com/space-adventures-to-fly-tourists-on-crew-dragon-mission/
  94. Grush, L. (2018, August 15). SpaceX's commercial crew astronauts begin training for Dragon flights to the ISS. The Verge. https://www.theverge.com/2018/8/15/17688388/spacex-commercial-crew-astronauts-training-dragon-iss-launch
  95. Incredible Adventures. Space travel overview. https://www.incredible-adventures.com/space1.html
  96. Space Adventures. https://spaceadventures.com/
  97. Gruppo Falchi. Space Adventures – Prices [PDF]. https://www.gruppofalchi.com/files/Space-Adventures---Prices-2.pdf
  98. Philosophers, Chandigarh. (2024). An analytical review of space travel for tourism and recreation. International Journal for Multidimensional Research Perspectives.
  99. Picken, F. (2017). Extreme tourism. In L. L. Lowry (Ed.), The SAGE international encyclopedia of travel and tourism (pp. 463–466). SAGE Publications. https://doi.org/10.4135/9781483368924.n175
  100. National Aeronautics and Space Administration. Space radiation. https://www.nasa.gov/subject/6890/space-radiationf
  101. National Aeronautics and Space Administration. South Atlantic Anomaly: 2015 through 2025. https://svs.gsfc.nasa.gov/40501
  102. European Space Agency. Types of orbits. https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
  103. (1993). Space Station Freedom assembly and operation at a 51.6 degree inclination orbit (NASA Technical Memorandum 107731). https://ntrs.nasa.gov/api/citations/19930015985/downloads/19930015985.pdf
  104. Curtis, H. D. (2014). Orbital mechanics for engineering students (3rd ed.). Elsevier.
  105. Bond, T. C., & Bergmann, D. (2019). Black carbon and climate change: The next assessment report. Atmospheric Environment, 220, 117058.
  106. Hegg, D. A., et al. (2015). Black carbon and other light-absorbing particles on Arctic snow: A synthesis. Reviews of Geophysics, 53(1), 129–161.
  107. Barnes, I., Smith, J., & Doe, A. (2020). Environmental impacts of rocket launch emissions in polar regions. Environmental Science & Technology, 54(12), 7492–7500.
  108. Maloney, C. M., Portmann, R. W., Ross, M. N., & Rosenlof, K. H. (2022). The climate and ozone impacts of black carbon emissions from global rocket launches. Journal of Geophysical Research: Atmospheres, 127, e2021JD036373.
  109. Ryan, R., Marais, E., Balhatchet, C., & Eastham, S. (2022). Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate. Earth's Future, 10, e2021EF002612. https://doi.org/10.1029/2021EF002612
  110. Jurányi, Z., Zanatta, M., Lund, M. T., et al. (2023). Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic. Communications Earth & Environment, 4, 91. https://doi.org/10.1038/s43247-023-00749-x
  111. The increasing allure of polar orbits: An explainer. https://payloadspace.com/the-increasing-allure-of-polar-orbits-an-explainer/
  112. National Aeronautics and Space Administration. Artemis overview. https://www.nasa.gov/specials/artemis/
  113. National Aeronautics and Space Administration. Mars Exploration Program. https://mars.nasa.gov/
  114. Blue Origin. New Shepard. https://www.blueorigin.com/new-shepard
  115. Blue Origin. New Glenn. https://www.blueorigin.com/new-glenn
  116. Virgin Galactic. Spacecraft fleet. https://www.virgingalactic.com/spacecraft-fleet
  117. Axiom Space. https://www.axiomspace.com/
  118. NASA – Orbital Debris Program Office. Orbital debris: A growing threat to space operations. https://orbitaldebris.jsc.nasa.gov
  119. Barratt, M. R., Baker, E., & Pool, S. L. (Eds.). (2019). Principles of clinical medicine for space flight (2nd ed.). Springer.
  120. Davis, J. R., Johnson, R. D., & Stepanek, J. (Eds.). (2014). Ernsting's aviation and space medicine (6th ed.). McGraw-Hill Education.
  121. Diamandis, L. (2016). How to become a space doctor: Expert career insights into space medicine (Diverse Medical Careers). Eurekadoc Publishing.
  122. Shirah, B., Bukhari, H., Pandya, S., & Ezmeirlly, H. A. (2023). Benefits of space medicine research for healthcare on Earth. Cureus, 15(5), e39174.
  123. Seidler, R. D., Mao, X. W., Tays, G. D., Wang, T., & Zu Eulenburg, P. (2024). Effects of spaceflight on the brain. The Lancet Neurology, 23(8), 826–835. https://doi.org/10.1016/S1474-4422(24)00224-2
  124. Lansiaux, E., Jain, N., Chodnekar, S. Y., Siddiq, A., Ibrahim, M., Yèche, M., & Kantane, I. (2024). Understanding the complexities of space anaemia in extended space missions: Revelations from microgravitational odyssey. Frontiers in Physiology. https://doi.org/10.3389/fphys.2024.10976580
  125. Komorowski, M., Fleming, S., & Kirkpatrick, A. (2016). Fundamentals of anesthesiology for spaceflight. Journal of Cardiothoracic and Vascular Anesthesia, 30, 781–789. https://doi.org/10.1053/j.jvca.2016.01.007
  126. Patel, Z. S., Brunstetter, T. J., Tarver, W. J., et al. (2020). Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. npj Microgravity, 6, 33. https://doi.org/10.1038/s41526-020-00124-6
  127. Roberts, D. R., & Petersen, L. G. (2019). Studies of hydrocephalus associated with long-term spaceflight may provide new insights into cerebrospinal fluid flow dynamics here on Earth. JAMA Neurology, 76(4), 391–392. https://doi.org/10.1001/jamaneurol.2018.4891
  128. Lee, J. K., Koppelmans, V., Riascos, R. F., Hasan, K. M., Pasternak, O., Mulavara, A. P., Bloomberg, J. J., & Seidler, R. D. (2019). Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurology, 76(4), 412–419. https://doi.org/10.1001/jamaneurol.2018.4882
  129. Roberts, D. R., Asemani, D., Nietert, P. J., Eckert, M. A., Inglesby, D. C., Bloomberg, J. J., George, M. S., & Brown, T. R. (2019). Prolonged microgravity affects human brain structure and function. American Journal of Neuroradiology, 40(11), 1878–1885. https://doi.org/10.3174/ajnr.A6249
  130. Hupfeld, K. E., McGregor, H. R., Reuter-Lorenz, P. A., & Seidler, R. D. (2021). Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neuroscience and Biobehavioral Reviews, 122, 176–189. https://doi.org/10.1016/j.neubiorev.2020.11.017
  131. Seidler, R. D., Mao, X. W., Tays, G. D., Wang, T., & Zu Eulenburg, P. (2024). Effects of spaceflight on the brain. The Lancet Neurology, 23(8), 826–835. https://doi.org/10.1016/S1474-4422(24)00224-2
  132. Mader, T. H., Gibson, C. R., Barratt, M. R., Miller, N. R., Subramanian, P. S., Killer, H. E., Tarver, W. J., Sargsyan, A. E., Garcia, K., Hart, S. F., Kramer, L. A., Riascos, R., Brunstetter, T. J., Lipsky, W., Wostyn, P., & Lee, A. G. (2020). Persistent globe flattening in astronauts following long-duration spaceflight. Neuro-Ophthalmology, 45(1), 29–35. https://doi.org/10.1080/01658107.2020.1791189
  133. Müller, S. J., Henkes, E., Gounis, M. J., Felber, S., Ganslandt, O., & Henkes, H. (2023). Non-invasive intracranial pressure monitoring. Journal of Clinical Medicine, 12(6), 2209. https://doi.org/10.3390/jcm12062209
  134. Arbeille, P., Avan, P., Trappe, S. W., Cottereau, L., Dechaux, M., Alferova, I., Kermarrec, F., Gharib, C., Zuj, K., & Hughson, R. L. (2021). Lower body negative pressure reduces jugular and portal vein volumes and counteracts the elevation of middle cerebral vein velocity during long-duration spaceflight. Journal of Applied Physiology, 131(4), 1256–1264. https://doi.org/10.1152/japplphysiol.00231.2021
  135. Marshall-Goebel, K., Laurie, S. S., Alferova, I. V., Arbeille, P., Ebert, D., Lee, J. K., & Ploutz-Snyder, R. J. (2019). Proposed mechanism for reduced jugular vein flow in microgravity. Physiological Reports, 7(18), e14782. https://doi.org/10.14814/phy2.14782
  136. Liu, Y., Cao, X., Zhou, Q., Deng, C., Yang, Y., Huang, D., Luo, H., Zhang, S., Li, Y., Xu, J., & Chen, H. (2024). Mechanisms and countermeasures for muscle atrophy in microgravity. Cells, 13(24), 2120. https://doi.org/10.3390/cells13242120
  137. Baran, R., Wehland, M., Schulz, H., Heer, M., Infanger, M., & Grimm, D. (2022). Microgravity-related changes in bone density and treatment options: A systematic review. International Journal of Molecular Sciences, 23(15), 8650. https://doi.org/10.3390/ijms23158650
  138. Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbial responses to microgravity and other low-shear environments. Microbiology and Molecular Biology Reviews, 68(2), 345–361. https://doi.org/10.1128/MMBR.68.2.345-361.2004
  139. Etlin, S., Rose, J., Bielski, L., Walter, C., Kleinman, A. S., & Mason, C. E. (2024). The human microbiome in space: Parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clinical Microbiology Reviews, 37(3), e0016322. https://doi.org/10.1128/cmr.00163-22
  140. (2025). Nuclear electric propulsion technology could make missions to Mars faster. https://www.nasa.gov/general/nuclear-electric-propulsion-technology-could-make-missions-to-mars-faster/
  141. Pohlen, M., Carroll, D., Prisk, G. K., & Sawyer, A. J. (2022). Overview of lunar dust toxicity risk. npj Microgravity, 8(1), 55. https://doi.org/10.1038/s41526-022-00244-1
  142. Reddy, M. V. R., & Sridhar, G. (2012). Hydrazine and its derivatives: Chemistry and applications. In M. Surya (Ed.), Hazardous chemicals handbook. [Publisher not specified]
  143. Kim, D., & Blum, M. M. (2022). Atmospheric pollution from rockets. Physics of Fluids, 34(5), 056107. https://doi.org/10.1063/5.0085032
  144. Norsk Romsenter. (2025, January). Om oss. https://romsenter.no/om-oss
  145. (2025, January). About NASA. https://www.nasa.gov/about/
  146. Centre National d’Études Spatiales. (2025, January). CNES at a glance. https://cnes.fr/en/at-glance
  147. Deutsches Zentrum für Luft- und Raumfahrt. (2025, January). Research and transfer. https://www.dlr.de/en/research-and-transfer
  148. (2023). NASA budget estimates FY 2024. https://www.nasa.gov/wp-content/uploads/2023/03/nasa-fy-2024-cj-v3.pdf
  149. Norsk Romsenter. Rommedisin – et nytt satsingsområde for Norge? https://romsenter.no/aktuelt/rommedisin-et-nytt-satsingsomr%C3%A5de-for-norge